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schatzung der Korrelationsreichweite m6glich. Voraus- 
setzung f'tir eine G1/ittung nach dem beschdebenen Ver- 
fahren ist immer, dass der Abstand zwischen den Mess- 
punkten kleiner ist, als der durch die Korrelationsreich- 
weite L gegebene maximale Samplingpunktabstand 
Ab= 1/2 L. Dies ist jedoch bei praktischen Messungen 
erfahrungsgemass immer der Fall. Oelschlaeger (1969) 
hat ein der besch_riebenen G1/ittung verwandtes Ver- 
fahren ausgearbeitet, aus fehlerbehafteten Messwerten 
an beliebigen Stiitzpunkten genauere Werte der Streu- 
funktion an den Sampling-Punkten zu gewinnen. Ein 
unserer Meinung nach wichtiger Vorteil der beschrie- 
benen Methode besteht darin, Langen- und Breiten- 
entschmierung in einem Rechengang durchfiihren zu 
kt~nnen. 

Die Gfftttung passt sich dabei organisch in die Rech- 
nung ein. Verfahren, die ohne Glfittung arbeiten, k/Sn- 
hen grunds/itzlich nur die fehlerbehaftete Streukurve 
entschmieren. Die Berticksichtigung einer Absch~ttzung 
der Korrelationsreichweite nutzt nut bekannte physi- 
kalische Tatbest/inde zur G1/ittung aus. Eine weiter- 
gehende G1/ittung w/ire nut mt~glich, wenn der mathe- 
matische Typ der Streufunktion von vorneherein be- 
kannt w/ire. Um ihn zu ermitteln und damit Struktur- 
untersuchungen durchzuftihren, werden aber gerade 
die Streuexperimente durchgef'tihrt. 

Fiir Diskussionen und die lJberlassung yon Manu- 
skripten sowie weiterer Unterlagen m/Schten wir den 
Herren Prof. Dr O. Kratky, Dr H. Oelschlaeger, Dr 
H. Leopold aus Graz, Herrn N. Smirnov aus Pusch- 
tschino und Herrn Dr F. Hossfeld aus Jtilich unseren 
verbindlichen Dank aussprechen. 
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The Energy Flow of X-rays in Silieon Single Crystals 
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The angular divergence of the energy flow of anomalously transmitted X-rays in nearly perfect silicon 
crystals has been determined experimentally from image widths of dislocations on X-ray topographs. 
Anomalous transmission of copper, iron, and chromium radiation has been used. The result is compared 
with calculations using the dynamical theory of diffraction. It is shown that the angular divergence is 
almost constant regardless of the X-ray wavelength and that it can be made to decrease only by in- 
creasing the crystal thickness. 

Introduction 

According to the dynamical theory of diffraction a 
number of wave fields are produced in a crystal when 

an incident wave satisfies the Bragg condition for a 
particular set of lattice planes. The situation is de- 
scribed with the aid of the dispersion surface in recip- 
rocal space. Each wave field corresponds to a point on 
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this surface (tiepoint) and produces an energy flow in 
the direction of the normal to the surface (von Laue, 
1960; Kato, 1958). 

In the Laue case for a thick crystal, i.e./zt>> 1, where 
/t is the normal photoelectric absorption coefficient 
and t is the crystal thickness in the direction of the 
incident beam, only wave fields belonging to one 
branch of the dispersion surface will reach the exit 
surface of the crystal owing to reduced absorption. 
This phenomenon is known as anomalous transmission 
or the Borrmann effect. 

Crystal defects such as dislocations will destroy the 
anomalous transmission and may be recorded as 
'shadows' on a photographic plate. The effect has been 
widely used for the study of dislocations in nearly 
perfect crystals, for instance by Borrmann, Hartwig & 
Irmler (1958), Meier (1962), and Young, Baldwin, 
Merlini & Sherrill (1965). Recent reviews on the con- 
trast in dislocation images have been given by Bonse 
(1964) and Authier (1966). 

Owing to selective absorption, the direction of the 
energy flow is confined to a certain angular range 
around a direction parallel to the diffracting lattice 
planes. Young et al. (1965) observed the width of 
dislocation images in order to determine the effective 
angular divergence of the energy flow. However, they 
had no accurate method for measuring the distance 
from the dislocation to the exit surface. 

In this work dislocations running from the front to 
the back surface of the specimen have been used for 
the study of image widths. The angle of inclination of 
the dislocation line with respect to the surface is 
determined on topographs recorded by hard radiation 
(/zt < 1) and in this way the distance from each point 
on the dislocation line to the exit surface is determined. 
The angular divergence of the energy flow has been 
studied for several X-ray wavelengths in order to 
cover a wide range of the value of/zt. 

IIIII 
Lattice 
planes , ~ It ° 

Fig. 1. Ray  d iagram of  symmet r i c  Laue  case. K0 = wave-vec tor  
o f  direct  beam;  Kn = wave-vec tor  o f  diffracted beam;  S = 

Poyn t ing  vec to r ;  to = crystal  thickness.  

T h e o r y  

Intensity distribution in the diffracted beam 

Consider the symmetrical Laue case shown in Fig. 1. 
The theory is also simplified by considering a centro- 
symmetrical structure with origin of coordinates at a 
symmetry centre, which case applies to silicon. The 
notation used here is in the main the same as that of 
von Laue (1960). 

Starting from AO, the departure of the incident beam 
direction from the Bragg angle 0, it is convenient to 
define two variables y and Vr 

AO sin 20 
y=s inh  Vr- CIX~rh[ ' (1) 

where C is the polarization factor which equals unity 
or Icos 201 for the cr polarization state and for the rc 
state, respectively, and Xh=Zrh+iz~n is the Fourier 
coefficient of the dielectric susceptibility. 

The energy flow of the wave field inside the crystal 
is described by the Poynting vector S which will make 
an angle ~ with the lattice planes. For a wave field 
belonging to the dispersion surface of reduced ab- 
sorption the absorption coefficient with respect to the 
direction of S is given by 

COS (Z 
,us =/t  ~ [1 -Ca(1 _p2)i/2], (2) 

where 
e=(Z~n/Z~0) exp ( - M ) ,  

p = t g e / t g  0, - 1 _<p < 1 .  

Thermal motion is included through the Debye-Waller 
factor M. 

For a 220 reflexion in silicon ~ very nearly equals 
unity and the main departure from unity is given by 
the Debye-Waller factor. 

It can be shown that the direction of the energy 
flow is related to the departure from the Bragg condi- 
tion by 

p = tgh yr. (3) 

At the exit surface the energy flow of the wave field 
decomposes into a diffracted beam and a direct beam. 
The reflecting power, i.e. the ratio of the diffracted 
energy to the incident energy is given by 

where 

1 
= - -  exp ( - I Z s t s ) ,  (4) R 4 cosh 2 Vr 

t s=  to/cos ~. 

Under the experimental conditions used in this work 
the angular divergence o f the incident beam is large 
enough to cover the whole range of reflexion which 
is only about ten seconds of arc. Thus wave fields 
with all directions within the energy-flow triangle 
contained between the direct and diffracted beam 

A C 27A - 2* 
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directions are produced. Kato (1960) has derived a 
general expression for the intensity distribution at the 
exit surface due to a polarized incident beam taking 
both branches of the dispersion surface into account. 
Here only the branch of least absorption contributes 
but both states of polarization have to be considered. 

Suppose that the incident beam is unpolarized and 
that its intensity is constant within the range of 
reflexion, 

Io (a)(AO) = cons t .  (5) 

The incident power in the angular range corre- 
sponding to dy may be expressed as 

dP0(a) =I0(1 + C )  dy,  

III 
Lattice planes 

2R 

W 
r v 

Z 

Fig.2. Dislocation image due to angular divergence of the 
(6) energy flow. 

where I0 is a constant factor and C=  lcos 201. The first 
and second terms in the parenthesis of equation (6) 
represent the contributions of the cr and rc polarization 
components, respectively. Let the index i describe the 
state of polarization. Following Kato (1960) the inten- 
sity distribution of the diffracted beam along the r/axis 
of Fig. 1 is expressed as 

dPo,~(a) dP0,~(a) dy dvr dp 
I n , ~ ( r / ) = R ~  - - R i - - ~  . . . .  " dvr " dp " dr/ 

i=cr, z~. (7) 

Inserting equations (1) to (6) in equation (7) and adding 
the contributions of the two polarization components 
gives the total diffracted intensity. 

/0 
In(r/) - 4t0 sin 0 

where 

exp ( - / t t )  { 
(1 _p2)1/2 exp[pte(1 _p2)1/2] 

+ C exp [C/zt8 (1 _pZ)l/2]}, 

t = t o / cos  0.  

(8) 

In tens i t y  distribution on a traverse topograph 

When the crystal is traversed or a long focus line 
is used each point on the exit surface receives an inten- 
sity which is integrated over all values of p. However, 
if the crystal contains a disturbed volume e.g. sur- 
rounding a dislocation, the disturbance will destroy 
the anomalous transmission in the directions of the 
incident wave fields. This phenomenon may be de- 
scribed by saying that the disturbed volume will cast 
a shadow on to the exit surface of the crystal. The 
angular divergence of this shadow is described by 
equation (8). 

Consider a dislocation lying in the diffracting lattice 
planes as shown in Fig. 2. Suppose that the effective 
angular divergence of the shadow is given by Ace At 
the exit surface the shadow will have a width W given 
by 

W= 2[R + z tg(A~/2)] , (9) 

where R = radius of the disturbed volume, 
z = distance from the exit surface. 

Thus by determining the width as a function of z it 
should be possible to determine Aa experimentally. 
For comparison with the theory Aa is evaluated from 
the half maximum value according to equation (8). 

Experimental procedure 

The silicon crystals used for these studies are rectan- 
gular wafers 15 x 20 x 0.39 mm in size, containing only 
a few dislocations per cm 2. The large lateral surface is 
a (110) plane and the edges are along the [T10] and 
[001] directions. 

Topographs of the crystals were made using Lang's 
(1959) traverse technique. 

Dislocation images were recorded by anomalous 
transmission of copper, iron, and chromium K~ ra- 
diation. The values of/zt are 6.2, 12.7, and 22.1, respec- 
tively. The 220 reflexion was used throughout. 

The lengths of the dislocation lines were determined 
on topographs recorded by silver and molybdenum 
Ke radiation, (/zt=0.32, and 0-64, respectively). The 
measurements were made on the original topographs 
using a travelling microscope. 

On topographs reproduced here an arrow indicates 
the projection of the diffraction vector on to the image 
plane. 

Results 

Dislocations running from the front to the back sur- 
face of the crystal give rise to a delta-shaped image on 
anomalous transmission topographs due to the angular 
divergence of the energy flow. The sharp end of the 
image corresponds to the part near the exit surface. 

Dislocations lying in the (220) plane used for dif- 
fraction were chosen and the angles of the delta-shaped 
images were determined on the topographs. Some 
images of this kind are shown in Fig. 3. 

Fig. 4 shows the same dislocations on a topograph 
recorded by molybdenum Ke radiation. Here /zt < 1 
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05m  
Fig. 3. Traverse topograph of silicon. ~20 reflexion, Fe Kcq. 

J 

0"5 mm I 

Fig.4. Traverse topograph of silicon. TI 1 reflexion, Mo K0tL. 

I To f a c e  p. 20 
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which means that the image contrast is reversed and 
the full length of each dislocation line is seen. 

The angle of inclination of the dislocation with 
respect to the surface is determined from the length of 
the dislocation line on the topograph and the thickness 
of the crystal. Thus the distance from each point of 
the dislocation line to the exit surface is determined 
and the angular divergence of the energy flow follows 
from equation (9). 

Fig. 5 shows plots of intensity profiles according to 
equation (8) using the experimental values of pte. 
From data of the Debye-WaUer factor given in Inter- 
national Tables for  X-ray Crystallography (1962) it is 
estimated that e=0.97 for a 220 reflexion in silicon. 
The widths at half maximum have been determined 
from the plots. 

Table 1 summarizes the experimental and theoretical 
results. 

Table 1. Angular divergence o f  the energy f low o f  X-rays 
in silicon 

to =0.39 mm, e=0.97. 

Experimental Theoretical 
2 gte Ap/2 Ae Ap/2 d~ 

1"54 A 6"0 0"36 18 ° 0"51 25"2 ° 
1"94 12"3 0"29 18 0"35 23"2 
2"29 21"4 0"19 16 0"26 21"8 

The experimental error in the values of Ae is estimated 
to be + 1 °. 

Discussion 

The experimental values of the angular divergence of 
the energy flow are found to be smaller than the 
theoretical ones as shown in Table 1. A probable 
reason is that the theoretical model used here is over- 
simplified. 

I 

A o~ +., 

>. 0 "5  

E 

1"0 I 

(a) 
• 

(b) 

-1 "0  - 0 " 5  0 0 ' 5  1"0 
P 

Fig. 5. Intensity profile of the diffracted beam, (a) Itte= 6.0; 
(b) #t8 = 12"3 ; (c)/tt8 = 21"4, 

Actually the situation is more complicated, as dis- 
cussed in the reviews by Bonse (1964) and Authier 
(1966). The dislocation is not a discontinuous lattice 
defect but consists of a strain field continuously de- 
creasing as 1/r, where r is the distance from the dis- 
location line. 

Wave fields incident on the highly distorted region 
near the dislocation core will create new wave fields 
(interbranch scattering) which will be absorbed. The 
result is a decrease of intensity in the directions of the 
incident wave fields i.e. the dislocation will cast a 
shadow. 

However, wave fields incident on the lightly distorted 
regions away from the dislocation line may adapt 
themselves to the slowly varying state of the lattice 
and follow curved paths. Paths resulting from this 
process have been calculated by Kambe (1963) for 
wave fields incident on an edge dislocation in ger- 
manittm. 

In Table 1 it is also seen that the angular divergence 
is nearly constant in the region around 20 ° for all 
values of lzt. This seems surprising at first sight since 
it is often stated in the literature that for large values 
of/zt the energy flow should be practically parallel to 
the lattice planes. The reason for this discrepancy is 
the way in which a large value of/zt has been achieved, 
as will be shown below. 

Neglecting the contribution from the zc state of 
polarization an approximate expression for the width 
Ap at half maximum according to equation (8) is 
given by 

[ 2 ln2 ll/z 
A p / 2 ~ - \ ~-~-2-f-1] . (10) 

Thus for large values of Izt, Apoc(Izt) -1/z. Now/zoc2 3 
provided that no absorption edge is included in the 
wavelength range, 2 oc sin 0, and t = t0/cos 0. It follows 
that 

tg(Aa/2) octgl/z 0/sin 0 .  (11) 

For O<rc/4 this function decreases with increasing 0 
but within the 0 range used here the variations are 
small. 

Thus a large value o f / t t  does not always mean a 
highly collimated energy flow. I f / z  is increased by 
using more absorbant radiation the increased value 
of/tt  is compensated by a correspondingly larger Bragg 
angle in the energy flow triangle. The only way to 
reduce the angular divergence of the energy flow to an 
appreciable extent is to use thicker crystals. For in- 
stance A~=4  ° would require a silicon crystal about 
1.5 cm thick, according to equation (10). 

The author wishes to thank Professor G. Brogren 
for his kind interest during the course of this work 
and for many stimulating discussions. A grant from 
Statens Naturvetenskapliga Forskningsr~d is gratefully 
acknowledged, 
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A general expression for the intensity of X-rays diffracted by a conglomeration of identical cylindrical 
crystallites with a given angular opening and with axes oriented randomly with respect to the incident 
beam has been worked out. This expression leads directly to the expressions derived by Mitra 
for one- and two-dimensional curved crystallites. For cylindrical shells the peaks are highly asymmetri- 
cal. They become sharper and shift towards the higher-angle side as the shell axes become more tilted 
with respect to the normal to the plane containing the incident and the equatorially diffracted beams. 
The overall nature of the diffraction pattern remains the same. The effect of increasing the number of 
scattering centres on each arc is found to be only to increase the peak heights and their sharpnesses. The 
effect of radial thickness is to cause a peak shift and to give rise to additional peaks. The peak heights 
are increased and become sharper as the radial thickness increases. The effect of curvature is an increase 
in the number of peaks, an increase in the general background level of scattering and a decrease in the 
t~eak heights. 

Introduction 

In the course of two previous publications [Mitra (1965) 
and Mitra & Bhattacherjee (1968) hereafter referred to 
as I and II respectively], an elementary theory of dif- 
fraction by an axially parallel aggregate of curved crys- 
tallites has been developed and a general expression for 
two-dimensional curved crystals has been derived. In 
the treatment, both the incident and the diffracted 
beams have been assumed to lie in the same plane as 
the two-dimensional crystallites. The expression de- 
rived is satisfactory in the sense that for the extreme 
cases of zero curvature and of equiangularly spaced 
atoms arranged on the circumference of a circle, it 
leads, as expected, respectively to Bragg's law and to 
the expression derived by Blackman (1951) for a cir- 
cular lattice. This expression has also the further prop- 
erty of taking into account the angular opening of the 
curved crystallites as is the case with the expression 
derived by Kunze (1956). A further virtue of this ex- 
pression is that it is a finite series of terms containing 
Bessel functions of order zero (in contrast with infinite 
series of Bessel functions of very high order in the ex- 
pression of the above authors) rendering the task of' 
numerical evaluation comparatively easy, H.ow~ver, it 

would be more realistic to consider an agglomeration 
of identical cylindrical crystallites with a given angular 
opening and with axes oriented randomly with respect 
to the incident beam - in short, a powder of cylindrical 
fragments. In this paper, it has been attempted to 
achieve this. 

Derivation of the general expression 
for diffraction intensity 

Each crystallite is considered to be built up of an iden- 
tical stacking of T identical layers of the type of ABCD 
[Fig. l(a)], the details being the same as in Fig. 1 of I. 
The stacking along the Z direction is at equal intervals, 
c, as shown in Fig. l(b). The curvature lies in the X Y  
plane. ABCD consists of M concentric arcs at radial 
distances R, R + b, R + 2b, . . . R + rob , . . .  R + ( M -  1)b 
respectively. Each arc has N lattice points arranged 
equiangularly on it so that two consecutive points on 
the same arc subtend an angle ~0 at the point of inter- 
section of the axis OZ with the plane ABCD. The an- 
gular opening is denoted by a parameter Q where 
Q =2rc/N~o. Any lattice point J [Fig.l(b)] in the cylin- 
drical lattice occupies the rth site on the ruth arc on the 
tth stack and is described by (r,m,t). The point A is 


